Step of Proof: p-fun-exp-injection
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-fun-exp-injection
:
A
:Type,
f
:(
A
(
A
+ Top)). p-inject(
A
;
A
;
f
)
(
n
:
. p-inject(
A
;
A
;
f
^
n
))
latex
by ((InductionOnNat)
CollapseTHEN (Auto
))
latex
C
1
: .....basecase..... NILNIL
C1:
1.
A
: Type
C1:
2.
f
:
A
(
A
+ Top)
C1:
3. p-inject(
A
;
A
;
f
)
C1:
p-inject(
A
;
A
;
f
^0)
C
2
: .....upcase..... NILNIL
C2:
1.
A
: Type
C2:
2.
f
:
A
(
A
+ Top)
C2:
3. p-inject(
A
;
A
;
f
)
C2:
4.
n
:
C2:
5. 0 <
n
C2:
6. p-inject(
A
;
A
;
f
^
n
- 1)
C2:
p-inject(
A
;
A
;
f
^
n
)
C
.
Definitions
Void
,
n
+
m
,
-
n
,
A
,
False
,
i
j
,
A
B
,
{
x
:
A
|
B
(
x
)}
,
left
+
right
,
Top
,
P
Q
,
x
:
A
.
B
(
x
)
,
,
t
T
,
s
=
t
,
n
-
m
,
#$n
,
f
^
n
,
a
<
b
,
,
x
:
A
B
(
x
)
,
Type
,
p-inject(
A
;
B
;
f
)
Lemmas
ge
wf
,
nat
properties
,
top
wf
,
nat
wf
,
nat
ind
tp
,
p-inject
wf
origin